Two-Dimensional MoS₂/WS₂ Heterostructure Synthesized from WO_{3-x}/MoO_{3-x} Core-Shelled Nanowires

Qi Zhang , Liying Jiao

Department of Chemistry, Tsinghua University, Beijing, China lyjiao@mail.tsinghua.edu.cn

Abstract

Controlled stacking of different two-dimensional (2D) atomic layers will greatly expand the family of 2D materials and broaden their applications. Here we developed a novel approach for synthesizing MoS_2/WS_2 heterostructures by chemical vapor deposition. The successful synthesis of pristine MoS_2/WS_2 heterostructures is attributed to the usage of core-shelled WO_{3-x}/MoO_{3-x} nanowires as a precursor, which naturally ensures the sequential growth of MoS_2 and WS_2 . The obtained MoS_2/WS_2 heterostructures exhibited high crystallinity and high mobility as evidenced by various microscopic, spectroscopic and electrical measurements. We also explored the selectivity and effects of the stacking orientation in the heterostructures and concluded that the difference in the bandgap of MoS_2/WS_2 bilayers introduced by varied stacking configurations was very small. Our approach elucidates that the rational design of precursors can accurately control the growth of high quality 2D heterostructures and this approach can be extended to create versatile 2D TMDCs heterostructures by using various core-shelled nanomaterials synthesized during the past two decades as precursors.

References

- [1]Yu, Y.; Hu, S.; Su, L.; Huang, L.; Liu, Y.; Jin, Z.; Purezky, A. A.; Geohegan, D. B.; Kim, K. W.; Zhang, Y.; Cao, L. *Nano Lett.* 2015, *15*, 486-491.
- [2]Gong, Y.; Lin, J.; Wang, X.; Shi, G.; Lei, S.; Lin, Z.; Zou, X.; Ye, G.; Vajtai, R.; Yakobson, B.
 I.; Terrones, H.; Terrones, M.; Tay, B. K.; Lou, J.; Pantelides, S. T.; Liu, Z.; Zhou, W.; Ajayan, P. M. *Nat. Mater.* 2014, *13*, 1135-1142.

MoO_{3-x} Gas phase sulfurization MoS₂/WS₂ bilayer S μm S μm

Figures